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Populations of many marine species are only weakly synchronous,
despite coupling through larval dispersal and exposure to syn-
chronous environmental drivers. Although this is often attributed
to observation noise, factors including local environmental differ-
ences, spatially variable dynamics, and chaos might also reduce
or eliminate metapopulation synchrony. To differentiate spatially
variable dynamics from similar dynamics driven by spatially vari-
able environments, we applied hierarchical delay embedding. A
unique output of this approach, the “dynamic correlation,” quan-
tifies similarity in intrinsic dynamics of populations, independently
of whether their abundance is correlated through time. We ap-
plied these methods to 17 populations of blue crab (Callinectes
sapidus) along the US Atlantic coast and found that their intrinsic
dynamics were broadly similar despite largely independent fluctu-
ations in abundance. The weight of evidence suggests that the
latitudinal gradient in temperature, filtered through a unimodal
response curve, is sufficient to decouple crab populations. As
unimodal thermal performance is ubiquitous in ectotherms, we
suggest that this may be a general explanation for the weak syn-
chrony observed at large distances in many marine species, al-
though additional studies are needed to test this hypothesis.

synchrony | environmental gradients | time-delay embedding | hierarchical
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Metapopulation synchrony has been studied extensively since
the 1990s (1, 2), and the theoretical requirements for syn-

chrony are now well understood. Populations with similar local
dynamics will develop correlated fluctuations in abundance if they
are coupled by dispersal (3, 4), if they are driven by synchronous
environmental fluctuations (the Moran effect; refs. 5 and 6), or if
they interact with another species that is synchronized (7–9). In
natural populations, synchrony is typically (although not exclu-
sively; see, e.g., ref. 10) inferred from temporal correlations in
abundance across subpopulations and the manner in which this
correlation decays with distance. The theoretical ingredients for
synchrony are supported by laboratory experiments (11, 12), and
synchrony has been documented in many natural populations (1).
Importantly, these synchrony-generating mechanisms are generic;

they apply to almost any dynamical system. In fact, synchrony theory
in the physical sciences is closely parallel (13–15), and shared drivers
are routinely used to synchronize independent oscillators in engi-
neering applications (14).
In light of this genericity, when we encounter a pair of pop-

ulations coupled by dispersal and responsive to highly correlated
environmental drivers, we ought to be curious if we observe that
they are only weakly correlated. Yet, many marine ectotherms
are coupled through panmictic larval dispersal (16) and are strongly
responsive to temperature (17, 18), but exhibit only weak correla-
tions among nearby populations, with more distant populations
apparently independent (SI Appendix, Table S1). Such “weak syn-
chrony” has also been found in insects (19) and birds (20).
Of course, there are many mechanisms which might cause pop-

ulations to fluctuate independently, and thus asynchrony is typi-
cally taken as the null hypothesis (e.g., ref. 21). However, few
studies have attempted to differentiate among synchrony-disrupting

mechanisms. Here we ask whether heterogeneous fluctuations
among populations are due to intrinsic differences in population
dynamics or due to similar mechanisms being driven by different
local environments.
If we had a well-vetted population model, we might address

this question by fitting it to each population using local envi-
ronmental data and comparing parameter estimates. However,
geographic variation in population dynamics (e.g., refs. 22–24)
can result from, among other things, latitudinal gradients in growth
rate (25), winter survival (26), thermal performance (27), lifespan
(28), and community composition (29). Formulating a mechanistic
model that can account for spatial variation in vital rates, thermal
performance, species interactions, and dispersal is challenging. Yet,
our ability to successfully predict population trajectories—and
to use these predictions to guide conservation and management
actions—depends critically on our understanding of the underlying
processes (30). Thus, being able to disentangle differences among
dominant mechanisms versus differences in the environmental
conditions driving them has important implications for our ability
to derive process-based understanding from population time series.
We propose 5 hypotheses for understanding heterogeneous

fluctuations in marine metapopulations coupled through larval
dispersal. For concreteness, we frame these in terms of a simple
model of 2 populations, although the statistical analysis described
below does not rely on this model. Population densities x1 and x2
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are driven by the local environment E1 and E2, and coupled by
dispersal. Specifically,

xi,t+1 = ð1− μÞFi
�
xi,t,Ei,t

�
+ μFj

�
xj,t,Ej,t

�

for i= 1,2 and j= 2,1 where μ is the fraction of the population
that disperses each year, and the functions F1 and F2 summarize
the mechanisms governing population dynamics. In this simple
example, there is only one environmental driver, E. If F1 and F2
are the same and μ is sufficiently large and/or E1 and E2 are
strongly correlated, then we expect x1 and x2 to be correlated
(4, 31).
Obviously, if estimates of x1 and x2 are contaminated by suffi-

cient observation noise, populations 1 and 2 will appear uncor-
related (hypothesis I). Less trivially, heterogeneity in dynamics will
also reduce synchrony (32–36). Dynamical heterogeneity can
emerge from both differences in mechanisms and differences in
drivers, so we must distinguish between differences in the shapes
of F1 and F2 versus differences in the inputs. Thus, weak corre-
lations in abundance can be generated by E1 and E2 being un-
correlated (hypothesis II; refs. 31 and 37), F1 and F2 being
sufficiently different shapes (hypothesis III; refs. 13, 19, and 38),
or, if F is nonlinear, differences in the means of E1 and E2 (hy-
pothesis IV; refs. 39–41). In what follows, we characterize intrinsic
dynamics through the shape of F in order to distinguish this from
differences in putative drivers, that is, the inputs to F. Finally,
chaotic systems are more difficult to synchronize than stable sys-
tems either by coupling or the Moran effect (4, 42–44), so pop-
ulations may be weakly correlated—even if all other elements are
identical—because the local dynamics are chaotic (hypothesis V).
Empirically differentiating among these hypotheses is chal-

lenging because several may occur simultaneously. Quantifying
heterogeneity in intrinsic dynamics (hypothesis III), as distinct
from differences in extrinsic forcing (hypotheses II and IV)
presents a particular challenge. For any pair of populations, we
want to determine whether F1 and F2 are different or whether
they are the same but driven by different inputs. Although some
insights may be gained by fitting simple parametric models (e.g.,
refs. 19 and 45–47) and comparing parameter estimates, these
methods do not address all of the relevant possibilities. A flexible
approach to measuring the hidden similarity in the dynamics
(i.e., the shapes of F) of weakly correlated populations is needed.
Here, we used hierarchical Bayesian time-delay embedding

models to quantify similarity in intrinsic dynamics and test the rel-
evance of other hypotheses for weak synchrony in metapopulations

(Materials and Methods and SI Appendix, section 1). Time-delay
embedding models are nonparametric time series methods based
on Takens’ (48) theorem which use time lags to implicitly ac-
count for dispersal, species interactions, and other unobserved
variables (see, e.g., refs. 49 and 50). The hierarchical Bayesian
approach to delay embedding (51, 52) produces a “dynamic
correlation” ðρDÞ metric that directly quantifies similarity in the
shape of the local maps (i.e., generalized versions of F1 and F2)
fit to the time series in each pair of locations, allowing us to test
for heterogeneity in intrinsic dynamics. When the estimated
maps are identical, the dynamic correlation will be close to 1
regardless of the temporal correlation in the time series. Alter-
natively, if the maps differ between populations, then the dy-
namic correlation will be reduced (for more details and an
illustration, see SI Appendix, section 2 and Fig. S1). The fitted
models also enable us to evaluate nonlinearity, noise, and the
effect of environmental gradients and environmental correla-
tions on predicted metapopulation synchrony. Using these re-
sults, combined with traditional analytical methods, we evaluated
relative support for the 5 hypotheses.
As a case study, we investigated abundance fluctuations in the

blue crab (Callinectes sapidus) metapopulation using time series
from 17 sites across the US Atlantic coast (Fig. 1A and SI Ap-
pendix, Table S2). Atlantic blue crabs have nearly panmictic larval
dispersal (53), and the dynamics of these estuarine ectotherms are
known to be strongly influenced by temperature and precipitation
(e.g., ref. 54). However, as we document below, populations sep-
arated by >200 km are apparently independent, with average
correlations indistinguishable from zero.
We first examined metapopulation synchrony by computing

correlograms, which express correlation as a function of distance
(55), and wavelet coherence plots, which quantify how correla-
tion between population fluctuations varies across different fre-
quencies and over time (56).
We then fit hierarchical delay embedding models to the met-

apopulation time series data. As predictors, we used 4 lags each of
past crab abundance and 3 putative environmental drivers (August
sea surface temperature, January air temperature, and Palmer
Drought Severity Index [PDSI]), as well as commercial blue crab
landings. These were selected based on prior studies and the nat-
ural history of the species (SI Appendix, section 3 and Table S3).
From the delay embedding models, we examined time series pre-
dictability, dynamic correlation estimates, and shapes of the pop-
ulation responses to each predictor.

A B

Fig. 1. (A) Locations of blue crab populations along the US Atlantic coast that were used in this study. Sources and metadata are provided in SI Appendix,
Table S2. (B) Spline correlograms for crab abundance, January temperature, August temperature, and PDSI. Bands are bootstrapped 95% CIs.
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We then used the fitted models to examine the effects of spatial
heterogeneity in intrinsic dynamics and environmental drivers on
metapopulation synchrony. To do so, we generated predicted time
series under 4 scenarios: 1) without spatial variation in the local
dynamics (i.e., all Fs identical), 2) without spatially variable envi-
ronmental fluctuations (i.e., all environments perfectly correlated),
3) without environmental gradients (i.e., all means identical), and
4) with neither spatially variable environmental fluctuations nor
gradients. We compared the observed and predicted patterns of
synchrony using correlograms and the correlation matrix distance
(CMD), which measures lack of correspondence between corre-
lation matrices (57).

Results
Pearson correlations among neighboring blue crab populations
(<200 km apart) were quite weak (∼0.2), and crab populations
more than a few hundred kilometers apart were not significantly
correlated (Figs. 1B and 2A). In addition, pairwise wavelet co-
herence analysis indicated that crab populations displayed ir-
regular and sporadic periods of modest synchrony, with no clear
trends or patterns (Dataset S1).
If observation noise renders estimated correlations nonsig-

nificant (hypothesis I), the time series should be effectively un-
predictable (58). We examined within-population predictability
using independent delay embedding models (i.e., ρD = 0) and
found that crab abundances were fairly predictable, with an av-
erage within-sample R2 of 0.49. Given these estimates and the
observed temporal correlation ðρ̂Þ, an upper bound on the true
(noise-free) temporal correlation between 2 time series ðρÞ can
be obtained by assuming that all of the residual variance is due to
observation error, in which case ρi,j ≈ ρ̂i,j=ðR2

i R
2
j Þ1=2 (SI Appendix,

section 4). Using this upper bound, correlations increased among
nearby sites, but the distance over which populations became
uncorrelated was still quite short (<400 km) (SI Appendix,
Fig. S2B).
Theory on the Moran effect predicts that the distance over

which populations are correlated should be at least half that of
the environmental drivers (hypothesis II; refs. 31 and 59). How-
ever, the putative drivers (temperature, precipitation) remained
highly correlated at distances of 1,400 km or more, several times
longer than the spatial scale for blue crabs (Fig. 1B and SI Ap-
pendix, Fig. S3). Of course, this can’t rule out the possibility that
there are other drivers with shorter spatial scales.
Since heterogeneity in intrinsic dynamics can produce uncor-

related fluctuations (hypothesis III), we next evaluated dynamical
similarity across pairs of sites. Dynamic correlations ðρDÞ indicated
the local maps were quite similar among sites (0.59 on average;
Fig. 2B), with nearby populations having slightly higher ρD values.
A reduced model that omitted environmental drivers also resulted
in high ρD values (SI Appendix, Fig. S2I).

Our next step was to fit a single hierarchical model for all
populations, hereafter the “full model,” using pairwise ρD values
taken from the matrix in Fig. 2B and use this model to evaluate
the effects of each input. Conditional responses to each predictor
(with other inputs fixed at their mean) were similar across lo-
cations and exhibited fairly smooth latitudinal gradients (Fig. 3).
The predictor with the largest effect was crab population size the
previous year (t – 1). At t – 1, the effects of January and August
temperature were unimodal or increasing, with higher temper-
atures predicting higher crab abundance. In contrast, for January
temperature at t – 2 and August temperature at t – 2 and t – 3,
higher temperatures predicted lower crab abundance. The ef-
fects of population size and temperature were nonadditive (Fig.
4). PDSI, landings, and all inputs at lag t – 4 had negligible ef-
fects (see SI Appendix, Fig. S4 for all plots). Correlations among
the model residuals were not significantly different from zero at
all spatial distances, suggesting that the major drivers have been
accounted for.
We used the fitted model to predict patterns of synchrony

under different scenarios to further test the hypotheses. All pre-
dictions used step-ahead forecasts based on leave-one-out cross-
validation. First, we generated predictions from the full model
using the observed values of all predictors (see SI Appendix, Fig.
S6 for plots of observed and predicted time series). Correlations
among the predicted values resembled those of the observed
values (Table 1 and SI Appendix, Fig. S2D). They were slightly
higher within 200 km (averaging around 0.4 as opposed to 0.2; Fig.
5A), but the distance at which populations became uncorrelated
was similar.
To further explore the importance of local dynamics, we made

predictions using identical maps for all populations (i.e., ρD = 1).
The difference in predicted synchrony between this and the full
model reflects the contribution of local differences in intrinsic
dynamics (hypothesis III). We found that the predictions with
identical dynamics had slightly higher correlations (∼0.45 within
200 km) which decayed to zero over a slightly larger distance
(∼500 km vs. 300 km) (Table 1, Fig. 5A, and SI Appendix, Fig. S2C).
Environmental drivers, particularly temperature, displayed a

strong latitudinal gradient, despite their annual fluctuations be-
ing highly synchronous (SI Appendix, Figs. S7A and S8). So we
next compared the effects of environmental variability (hypothesis
II) and environmental gradients (hypothesis IV) on predicted syn-
chrony (Table 1, Fig. 5B, and SI Appendix, Figs. S2 D–G and S7).

A B

Fig. 2. Pairwise correlation matrices for blue crab populations. (A) Pearson
correlations (absolute value) for observed crab abundance. (B) Dynamic
correlations from pairwise hierarchical models.

Fig. 3. Conditional responses of crab populations to 3 lags of 3 predictor
variables from the hierarchical model with pairwise ρD values. Expected crab
abundance (scaled to mean 0) at time t is evaluated over each predictor
variable for each population, holding all other predictors fixed at their mean
value. Results for all predictor variables are shown in SI Appendix, Fig. S4.

Rogers and Munch PNAS | January 7, 2020 | vol. 117 | no. 1 | 481

EC
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 N

O
A

A
 C

E
N

T
R

A
L 

LI
B

R
A

R
Y

 o
n 

N
ov

em
be

r 
16

, 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910964117/-/DCSupplemental


Removing differences in local variability (environments perfectly
correlated but retaining local means) did not change predicted
synchrony. In contrast, removing the differences in local means
but retaining temporal variability greatly increased the distance
over which populations were positively correlated (>1,000 km).
Removing differences in both local mean and variability further
increased the distance over which populations were correlated.
Thus it appears that heterogeneity in mean environmental con-
ditions, rather than in environmental fluctuations, per se, is re-
quired to produce weak synchrony in blue crabs.
Finally, because chaotic dynamics are more difficult to syn-

chronize than stable dynamics (hypothesis V), we estimated the
dominant Lyapunov exponent for each population using the method
of Rosenstein et al. (60). The Lyapunov exponent quantifies the
mean rate of trajectory divergence, and positive values are typi-
cally interpreted as indicia of chaos (see, e.g., refs. 61 and 62).
Lyapunov exponents were all positive and similar in magnitude
(mean, 0.1; SD, 0.02; Fig. 6 and SI Appendix, section 5).

Discussion
Panmictic larval dispersal and highly correlated environmental
drivers originally lead us to anticipate that blue crabs would be
synchronous across much of their range; however, populations
were largely uncorrelated across the 1,700-km range we examined.
While all of the hypotheses we explored likely play some role, the
strongest evidence suggests that intrinsic local dynamics are
broadly similar and that the latitudinal gradient in temperature,
filtered through nonlinear thermal response curves (hypothesis
IV), acts to disrupt synchrony in the blue crab metapopulation.
We initially suspected the crab populations were, in fact,

correlated but that low-quality data rendered this undetectable.
However, if observation noise were the main culprit, model R2

would be low, and the upper bound on the correlations obtained
by attributing all residual variation to observation noise would
have been high. Since this was not the case, something more
interesting must be going on.
We next hypothesized that heterogeneity in abundance fluc-

tuations stems from heterogeneity in intrinsic dynamics. This
seemed reasonable, since current management for Atlantic blue
crabs is based on models fit separately for each state or estuary.
Differences in intrinsic dynamics could result from geographic
variation in crab life histories, thermal performance, or the
species with which the crabs interact (29). However, high values
for ρD from the hierarchical delay embedding model revealed
that the dynamics in different locations are quite similar. Forcing
all populations to have identical dynamics ðρD = 1Þ did not sub-
stantially reduce model fit or increase synchrony among predic-
tions. Hence, the largely uncorrelated fluctuations of the crab
populations belie consistent responses to past abundances and
environmental conditions.

In contrast, differences in mean environmental conditions and
nonlinear responses to those conditions appear to play an im-
portant role. Estimated responses to temperature were strongly
nonlinear (Fig. 3) and interacted with population size (Fig. 4).
Population growth rates increased with population size and
exhibited a unimodal or increasing response to temperature at
lag t – 1. This is consistent with studies on blue crab physiology
(63). The effect of temperature at lag t – 2 was inverted and re-
quires further consideration. Rather than a delayed effect of crab
physiology, we suspect this represents a temperature-mediated
interaction with another species. For instance, if the abundance
of a predator is positively influenced by temperature, this would
appear as a negative response of crabs to past temperatures.
Temperature was correlated over distances too long to explain
weak synchrony in blue crabs (31, 45, 59). However, differences in
mean temperature, filtered through a unimodal response curve,
cause the net effect of temperature fluctuations to differ, which
could decouple abundance fluctuations. Similar arguments have
been made for why populations near or far from thermal tolerance
limits will have different responses to climate change (64). Most
importantly, removing the environmental gradient from predic-
tions resulted in long-distance synchrony (Fig. 5B), providing
strong support for this mechanism. Forcing populations with
perfectly correlated environmental fluctuations did not markedly
increase synchrony.
The fact that the Lyapunov exponent estimates were positive is

also consistent with the idea that populations diverge because of
nonlinear dynamics interacting with differences in the local en-
vironment. Although suggestive of chaos, positive estimates for
Lyapunov exponents may also be generated by process noise, and
we cannot definitively differentiate between them. However, an
analogous result was found in an intertidal community where
trajectory divergence was driven by seasonal, as opposed to spatial,
differences in environmental conditions (62).
The Atlantic coast of North America exhibits one of the

steepest coastal temperature gradients in the world. However,
the slope of the gradient in mean annual temperature has de-
creased by 10% over the last 30 y, due to warming at high lati-
tudes (65), and the gradient in August temperature has declined
by 25% over the last 20 y in our study region. Our results suggest
that there is some chance that blue crab populations will become
more synchronized as this gradient weakens—a source of some
concern given the importance of weak synchrony for maintaining
portfolio effects (66, 67). However, the presence of even mod-
erate gradients may be sufficient; reducing the environmental
gradient by 25% did not significantly increase predicted syn-
chrony among crab populations (SI Appendix, Fig. S9). This is
perhaps encouraging, although warming will have many other
adverse effects (17).
Although we have studied only a single species, the mecha-

nism we identified is likely to be quite common. Unimodal re-
sponses to temperature are ubiquitous among ectotherms (68),
which implies that a small increase in temperature will increase
population growth in regions where the mean is low and de-
crease growth where the mean is high. Highly correlated fluc-
tuations in temperature, superimposed upon a latitudinal cline in

Table 1. CMDs between observed and predicted correlations
generated under different scenarios

Model predictions made using CMD

Observed values 0.308
Identical dynamics 0.336
Identical environmental variation 0.376
Identical environmental means 0.537
Identical environmental means and variation 0.702

BA

Fig. 4. Conditional responses of crab populations to population size and (A)
January temperature and (B) August temperature at lag t – 1 for population
9 (results for all populations are shown in SI Appendix, Fig. S5). Expected
crab abundance at time t is evaluated while holding all other predictors
fixed at their mean value.
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the mean, will therefore have opposing effects on populations at
high and low latitudes, leading to uncorrelated fluctuations in
abundance. Further study is needed to determine whether weak
correlations in abundance observed in other ectotherms can be
understood similarly. This mechanism has been proposed to
explain reduced synchrony in insects across elevational temper-
ature gradients, although responses to temperature were not
directly quantified (41).
A prevailing problem in the study of ecological dynamics is

that many different processes can produce similar patterns. The
path from pattern to process has historically involved an in-
terplay of experiments and theory (e.g., refs. 69 and 70). But, for
large ecosystems, manipulative experiments can be infeasible,
and we must attempt to understand process by fitting models to
data. We argue that robust inferences about putative mecha-
nisms require tools that are unencumbered by assumptions about
other aspects of the dynamics. We suggest that continued de-
velopment and application of equation-free approaches (e.g.,
refs. 71 and 72) will be valuable in pursuing a mechanistic un-
derstanding of complex ecosystems as well as constructing robust
approaches to conservation and management (e.g., ref. 73).

Materials and Methods
Blue Crabs. Blue crabs are commercially important crustaceans found in
coastal estuaries. In the United States, they are found from Massachusetts to
theGulf ofMexico. Theymature in 1 to 2 y andhave a typical lifespanof 2 to 3 y.
The relatively short generation time of blue crabs and the availability of
long-term monitoring data over a large spatial scale make blue crabs an ideal
case study. More information about blue crabs and their life cycle is provided
in SI Appendix, section 3.

We compiled long-term (19 to 57 y) time series data on blue crab
abundance (mean annual catch per unit effort) for 17 populations sampled
in fishery-independent surveys in estuaries across the US Atlantic coast (Fig.
1A and SI Appendix, Table S2). Although the survey methods employed
differ across populations, they have remained consistent through time
within each survey, and provide an index of local density. To remove scale
differences across sites resulting from differences in gear efficiency, each
population time series was rescaled by the within-site mean and natural
log-transformed. Other standardization procedures (e.g., subtracting
mean and dividing by SD) produced similar results. Environmental pre-
dictors were centered on 0 across sites and rescaled to a global variance of
1. For a detailed description and justification of the predictor variables
used, see SI Appendix, section 3.

Gaussian Process Time-Delay Embedding. Takens’ theorem (48) and its extension
to nonautonomous systems (74) justifiesmodeling the abundance from a single site i
as a function of its lags, yi,t−1, . . . yi,t−L, and relevant external drivers, Ei,t−1, . . . Ei,t−L.
That is, yi,t = fiðxi,tÞ+ «i,t with xi,t = fyi,t−1, . . . yi,t−L, Ei,t−1, . . . Ei,t−Lg. In practice,
the mapping is not perfect; hence the model includes approximation error or
process uncertainty, «i,t ∼Nð0,V«Þ. The functional form for fiðxi,tÞ is not known
a priori and is determined empirically, allowing for arbitrary interactions
among the predictors. We estimate the shape of the nonlinear functions fi

using Bayesian Gaussian process (GP) regression (52, 75). Further details of the
GP model implementation are provided in SI Appendix, section 1. For a com-
plete description of the model, see Munch et al. (52).

To integrate information from multiple sites, we use a hierarchical model
structure. Specifically, we decompose the site-specific delay-coordinate map, fi
into shared, μ, and independent, gi, components, fi = μ+gi where μ∼GPð0,CÞ
and gi ∼GPð0,ΣÞ. The total point-wise prior variance in fi is partitioned into
within- and across-site components, given by ϖ2 = τ2 + σ2. We write σ2 = ρDϖ

2

and τ2 = ð1− ρDÞϖ2 with ρD between 0 and 1. Under this specification, the cor-
relation between 2 site-specific maps evaluated at the same input, fiðxÞ and fjðxÞ,
reduces to ρD. Moreover, simulations indicate that ρD provides a good approxi-

mation of Æfi , fjæ=½Æfi , fiæÆfj , fjæ�1=2 where Æfi , fjæ=
R
fiðxÞfjðxÞdx and the integral

covers domain of the data (51). Thus ρD (the “dynamic correlation”) indicates the
similarity of the reconstructed maps between sites. The fs are identical when
ρD = 1 and independent when ρD = 0.

Conditional on the data and the maximum a posteriori estimates of the
parameters, the posterior for fis GPðmc ,ΣcÞ, where mc and Σc are the pos-
terior mean and covariance functions obtained using standard formulae for
conditioning in multivariate normals (75).

We used the fitted GP model to generate out-of-sample predictions under
different environmental scenarios as additional tests for hypotheses II and IV.
Specifically, we evaluated the contribution of locally distinct means and lo-
cally distinct temporal fluctuations to synchrony reduction. This resulted in 4
combinations of prediction scenarios: 1) no gradient, identical fluctuations; 2)
no gradient, original fluctuations; 3) original gradient, identical fluctuations;
and 4) original gradient, original fluctuations (SI Appendix, Fig. S7). The CMD
used to compare observed and predicted correlation matrices is defined as 1
minus the Pearson correlation between the off-diagonal elements (57) and is
analogous to a likelihood ratio test for different correlation structures when
the means are identical.

Data and Software Availability. All analyses were performed in Matlab, with
the exception of the correlograms and pairwise wavelet coherence analyses,
which were conducted using the packages “ncf” (76) and “biwavelet” (77),
respectively, in R v.3.3.1. The analysis code may be obtained from the au-
thors upon request. The crab and environmental data were obtained from
the sources listed in SI Appendix, Tables S2 and S3.

A B

Fig. 5. Spline correlograms for out-of-sample predictions generated under different scenarios. (A) Correlograms for observed data and for predictions from
the hierarchical model with either pairwise ρD values or ρD fixed to 1 (identical [ident.] dynamics). Predictions were made over the observed environmental
conditions. (B) Correlograms for predictions from the hierarchical model with pairwise ρD values, using either the observed environmental (env.) conditions, or
fixing the environmental variation or means to be identical across sites. Bands are bootstrapped 95% CIs.
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Fig. 6. Estimates of the dominant Lyapunov exponent for blue crab pop-
ulations. Error bars are 95% CIs.
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